
ESERCITAZIONE N. 1

di Meccanica Applicata alle Macchine per gli allievi del Corso di Laurea in Ingegneria Meccanica (Anno Accademico 2004-2005)

A. Argomenti introduttivi

- 1. Unità di misura del sistema internazionale (con particolare riferimento alle grandezze cinematiche e dinamiche).
- 2. Definizione di scala di rappresentazione, relativa equazione dimensionale ed esempi applicativi.
- 3. Integrazione grafica, scala del diagramma integrale e casi particolari.
- 4. Integrazione numerica con i metodi approssimati di Bezout e di Simpson Cavalieri.
- 5. Definizione di errore assoluto, errore relativo ed errore percentuale.

B. Testo

Parte prima

Ad un corpo di massa m, inizialmente in quiete, è applicata una forza \vec{F} continua, variabile in funzione del tempo secondo la relazione

$$\left|\overrightarrow{F}\right| = A t^3 + B t^2 + C t$$
 (*).

Costruire il diagramma della forza e quello dell'accelerazione \vec{a} assunta dal corpo; ricavare, quindi, il diagramma della velocità \vec{v} , della quantità di moto \vec{q} , dell'energia cinetica E e dello

spazio s. Dedotti, inoltre, i valori che assumono $|\vec{F}|$, \vec{a} , \vec{v} , \vec{q} , E ed s negli istanti t_1 , t_2 e t_3 (*), risolvere il problema analiticamente e determinare, per confronto, gli errori relativi della risoluzione grafica.

Parte seconda

Applicando le formule approssimate di Bezout e Cavalieri-Simpson, determinare la velocità del corpo e lo spazio da esso percorso nell'istante t_3 . Calcolare, infine, gli errori relativi che tali procedimenti comportano.

(*) Si assuma:

100 kg	0,27 Ns ⁻³	-8,10 Ns ⁻²	-1 -1	1 6	16 s	24 s
m	4	R	C	<i>†</i> 1	t 2	<i>†</i> 2